MF-SM Source Code
MfModel classes
mf_sm.mf_models.MfModel
Bases: ABC
Wrapping class around a multifidelity model to define it, train it and evaluate it.
Attributes: |
|
---|
Source code in aero_optim/mf_sm/mf_models.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
evaluate(x: np.ndarray)
abstractmethod
Returns a model prediction for a given input x.
Source code in aero_optim/mf_sm/mf_models.py
55 56 57 58 59 |
|
get_DOE() -> np.ndarray
Returns the DOE the model was trained with.
Source code in aero_optim/mf_sm/mf_models.py
64 65 66 67 68 69 70 71 72 |
|
get_y_star() -> float | np.ndarray
Returns the current best lf fitness (SOO).
Source code in aero_optim/mf_sm/mf_models.py
99 100 101 102 103 104 105 |
|
set_DOE(x_lf: np.ndarray, x_hf: np.ndarray, y_lf: np.ndarray, y_hf: np.ndarray)
Sets the hf and lf DOEs the model was trained with.
Source code in aero_optim/mf_sm/mf_models.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
train()
abstractmethod
Trains a model with low and high fidelity data.
Source code in aero_optim/mf_sm/mf_models.py
49 50 51 52 53 |
|
mf_sm.mf_models.MfDNN
Bases: MfModel
Wrapping class around a torch multifidelity deep neural network model.
Source code in aero_optim/mf_sm/mf_models.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
mf_sm.mf_models.MfSMT
Bases: MfModel
Wrapping class around an smt multifidelity cokriging model.
Source code in aero_optim/mf_sm/mf_models.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
mf_sm.mf_models.MultiObjectiveModel
Bases: MfModel
Multi-objective surrogate model.
Source code in aero_optim/mf_sm/mf_models.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
|
get_y_star() -> float | np.ndarray
Returns the current best lf fitness (SO) or pareto front (MO).
Source code in aero_optim/mf_sm/mf_models.py
362 363 364 365 366 |
|
Infill problems
mf_sm.mf_infill.EDProblem
Bases: Problem
Euclidean Distance problem.
Source code in aero_optim/mf_sm/mf_infill.py
97 98 99 100 101 102 103 104 105 106 |
|
mf_sm.mf_infill.AcquisitionFunctionProblem
Bases: Problem
Generic class for Bayesian acquisition function optimization problems.
Source code in aero_optim/mf_sm/mf_infill.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
mf_sm.mf_infill.RegCritProblem
Bases: Problem
Regularized infill criterion problem: see R. Grapin et al. (2022): https://doi.org/10.2514/6.2022-4053
Source code in aero_optim/mf_sm/mf_infill.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
Infill acquisition functions
mf_sm.mf_infill.ED_acquisition_function(x: np.ndarray, DOE: np.ndarray) -> np.ndarray
Euclidean Distance: see X. Zhang et al. (2021): https://doi.org/10.1016/j.cma.2020.113485
Source code in aero_optim/mf_sm/mf_infill.py
22 23 24 25 26 27 28 29 30 |
|
mf_sm.mf_infill.LCB_acquisition_function(x: np.ndarray, model: MfSMT, alpha: float = 1) -> np.ndarray
Lower Confidence Bound acquisition function.
Source code in aero_optim/mf_sm/mf_infill.py
33 34 35 36 37 |
|
mf_sm.mf_infill.EI_acquisition_function(x: np.ndarray, model: MfSMT) -> np.ndarray
Expected Improvement acquisition function.
Source code in aero_optim/mf_sm/mf_infill.py
40 41 42 43 44 45 46 47 48 49 |
|
mf_sm.mf_infill.PI_acquisition_function(x: np.ndarray, model: MultiObjectiveModel) -> np.ndarray
Bi-objective Probability of Improvement: see A. J. Keane (2006): https://doi.org/10.2514/1.16875
Source code in aero_optim/mf_sm/mf_infill.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
mf_sm.mf_infill.MPI_acquisition_function(x: np.ndarray, model: MultiObjectiveModel) -> np.ndarray
Bi-objective Minimal Probability of Improvement: see A. A. Rahat (2017): https://dl.acm.org/doi/10.1145/3071178.3071276
Source code in aero_optim/mf_sm/mf_infill.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
|